Fast, Efficient and Scalable Solutions

DaniGuruji .Com

NCERT Mathematics Solutions for class 9 Chapter 2 POLYNOMIALS Ex. 2.4

Explore the comprehensive NCERT Textbook Solutions for Class IX.

KEY Concept For Chpt. 2.4 Polynomials

Identities :

Factor theorem says that p(x) be any polynomial of degree greater than or equal to one and let 'a' be any real number, then


(i) (x + y)2 = x2 + 2xy + y2


(ii) (x - y)2 = x2 - 2xy + y2


(iii) (x + y) (x - y) = x2 - y2


(iv) (x + a) (x + b) = x2 + (a + b)x + ab


(v) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx


(vi) (x + y)3 = x3 + y3 + 3xy(x + y) = x3+ y3 + 3x2y + 3xy2


(vii) (x - y)3 = x3- y3 - 3xy(x - y) = x3 - y3 - 3x2y + 3xy2


(viii) x3 + y3 = (x + y)(x2 – xy + y2)


(ix) x3 - y3 = (x - y)(x2 + xy + y2)


(x) x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)

x3 + y3 + z3 = 3xyz , if x + y + z = 0


Polynomials ⇒⇒ Exercise 2.4

Question 1 (i)

Use suitable identities to find the following products:
(i) (x +4) (x +10)


Solution :


Given , (x +4) (x +10)


Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab

Here, we have a = 4 and b = 10

Substituting the value of a and b in given expression, we get;


$$ (x + 4)(x + 10) $$

$$⇒ x^2 + (4 + 10) x + 4 × 10 $$

$$⇒ x^2 + 14 x + 40 $$


Question 1 (ii)

Use suitable identities to find the following products:
(ii) (x + 8)(x – 10)


Solution :


Given , (x + 8)(x – 10)


Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab

Here, we have a = 8 and b = (-10)

Substituting the value of a and b in given expression, we get;


$$ (x + 8)(x + (-10)) $$

$$⇒ x^2 + [8 + (-10)] x + [ 8 × (-10)] $$

$$⇒ x^2 + (-2)x -80 $$

$$⇒ x^2 - 2x - 80 $$


Question 1 (iii)

Use suitable identities to find the following products:
(iii) (x + 8)(x – 10)


Solution :


Given , (3x + 4)(3x – 5)


Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab

Here, we have x = 3x , a = 4 and b = (-5)

Substituting the value of x, a and b in given expression, we get;


$$ (3x + 4)(3x + (-5)) $$

$$⇒ 3x^2 + [4 + (-5)] 3x + [4 × (-5)] $$

$$⇒ 9x^2 + (-1)3x - 20 $$

$$⇒ 9x^2 - 3x - 20 $$


Question 1 (iv)

Use suitable identities to find the following products:
(iv) (y2 + ${3 \over 2} $)(y2 – ${3 \over 2} $)


Solution :


Given , (y2 + ${3 \over 2} $)(y2 – ${3 \over 2} $)


Using suitable identity : (a + b) (a - b) = a2 - b2

Here, we have a = y2 , b = 3/2

Substituting the value of a and b in given expression, we get;


$$⇒ (y^2)^2 - ({3 \over 2})^2 $$

$$⇒ y^4 - ({9 \over 4})$$


Question 1 (v)

Use suitable identities to find the following products:
(v) (3 – 2x)(3 + 2x)


Solution :


Given , (3 – 2x)(3 + 2x)


Using suitable identity : (a + b) (a - b) = a2 - b2

Here, we have a = 3 , b = 2x

Substituting the value of a and b in given expression, we get;


$$⇒ (3)^2 - (2x)^2 $$

$$⇒ 9 - 4x^2 $$


Question 2 (i)

Evaluate the following products without multiplying directly:
(i) 103 × 107


Solution :


Given , 103 × 107

We can write : = ( 100 + 3 ) ( 100 + 7 )


Using the identity : (x + a) (x + b) = x2 + (a + b)x + ab


Here, we have x = 100, a = 3 and b = 7


Substituting the value of x, a and b in given expression, we get;


$$ ( 100 + 3 ) ( 100 + 7 ) $$

$$⇒ (100)^2 + [3 + 7]× 100 + [3 × 7] $$

$$⇒ 10000 + (10)× 100 + 21 $$

$$⇒ 10000 + 1000 + 21 $$

$$⇒ 11021 $$


Question 2 (ii)

Evaluate the following products without multiplying directly:
(ii) 95 × 96


Solution :


Given , 95 × 96

We can write : = ( 90 + 5 ) ( 90 + 6 )


Using the identity : (x + a) (x + b) = x2 + (a + b)x + ab


Here, we have x = 90, a = 5 and b = 6


Substituting the value of x, a and b in given expression, we get;


$$ ( 90 + 5 ) ( 90 + 6 ) $$

$$⇒ (90)^2 + [5 + 6]× 90 + [5 × 6] $$

$$⇒ 8100 + (11)× 90 + 30 $$

$$⇒ 8100 + 990 + 30 $$

$$⇒ 9120 $$


Question 2 (iii)

Evaluate the following products without multiplying directly:
(iii) 104 × 96


Solution :


Given , 104 × 96

We can write : = ( 100 + 4 ) ( 100 - 4 )


Using the identity : (a + b) (a - b) = a2 - b2


Here, we have, a = 100 and b = 4


Substituting the value of x, a and b in given expression, we get;


$$ ( 100 + 4 ) ( 100 - 4 ) $$

$$⇒ (100)^2 - (4)^2 $$

$$⇒ 10000 - 16 $$

$$⇒ 9984 $$


Question 3 (i)

Factorise the following using appropriate identities:
(i) 9x2 + 6xy + y2


Solution :


Given , 9x2 + 6xy + y2


$$⇒ 3^2x^2 + 6xy +y^2 $$

$$⇒ (3x)^2 + 6xy +(y)^2 $$

$$⇒ (3x)^2 + 2× (3x)(y) +(y)^2 $$


This expression fits the form of the Perfect Square Trinomial (Addition) : a2 + 2ab + b2 = (a + b)2

so a = 3x and b = y


Therefore, the factorisation is:

$$⇒ (3x + y )^2 $$

$$⇒(3x + y )(3x + y )$$


Question 3 (ii)

Factorise the following using appropriate identities:
(ii) 4y2 - 4y + 1


Solution :


Given , 4y2 - 4y + 1


$$⇒ 2^2y^2 - 4y + 1^2 $$

$$⇒ (2y)^2 - 4y +(1)^2 $$

$$⇒ (2y)^2 - 2× (2y)(1) +(1)^2 $$


This expression fits the form of the Perfect Square Trinomial (Subtraction) : a2 - 2ab + b2 = (a - b)2

so a = 2y and b = 1


Therefore, the factorisation is:

$$⇒ (2y - 1 )^2 $$

$$⇒(2y - 1 )(2y - 1 )$$


Question 3 (iii)

Factorise the following using appropriate identities:
(iii) x2 - ${y^2 \over 100} $


Solution :


Given , x2 - ${y^2 \over 100} $


$$⇒ x^2 - {y^2 \over 10^2} $$

$$⇒ x^2 - ({y \over 10})^2 $$


This expression fits the form of the Difference of Squares : a2 - b2 = (a + b) (a - b)

so a = x and b = ${y \over 10} $


Therefore, the factorisation is:

$$⇒ (x + {y \over 10})(x - {y \over 10}) $$


Question 4 (i)

Expand each of the following, using suitable identities :
(i) (x + 2y + 4z)2


Solution :


Given , (x + 2y + 4z)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = x and b = 2y , and c = 4z

Substituting the value of a and b , c in given expression, we get;


$⇒ (x + 2y + 4z)^2 $


$⇒ (x)^2 + (2y)^2 + (4z)^2 $+$ 2(x)(2y) + 2(2y)(4z) + 2(4z)(x) $


$⇒ x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 8zx $


Question 4 (ii)

Expand each of the following, using suitable identities :
(ii) (2x - y + z)2


Solution :


Given , (2x - y + z)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = 2x and b = -y , and c = z

Substituting the value of a and b , c in given expression, we get;


$⇒ (2x - y + z)^2 $


$⇒ (2x)^2 + (-y)^2 + (z)^2 $ + $ 2(2x)(-y) + 2(-y)(z) + 2(z)(2x) $


$⇒ 4x^2 + y^2 + z^2 - 4xy - 2yz + 4zx $


Question 4 (iii)

Expand each of the following, using suitable identities :
(iii) (–2x + 3y + 2z)2


Solution :


Given , (–2x + 3y + 2z)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = -2x and b = 3y , and c = 2z

Substituting the value of a and b , c in given expression, we get;


$⇒ (–2x + 3y + 2z)^2 $


$⇒ (-2x)^2 + (3y)^2 + (2z)^2 $+$ 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x) $


$⇒ 4x^2 + 9y^2 + 4z^2 - 12xy + 12yz - 8zx $


Question 4 (iv)

Expand each of the following, using suitable identities :
(iv) (3a - 7b -c)2


Solution :


Given , (3a - 7b -c)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = 3a and b = -7b , and c = -c

Substituting the value of a and b , c in given expression, we get;


$⇒ (3a -7b -c)^2 $


$⇒ (3a)^2 + (-7b)^2 + (-c)^2 $ +$ 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a) $


$⇒ 9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca $


Question 4 (v)

Expand each of the following, using suitable identities :
(v) (– 2x + 5y – 3z)2


Solution :


Given , (– 2x + 5y – 3z)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = -2x and b = 5y ,and c = -3z

Substituting the value of a and b , c in given expression, we get;


$⇒ (– 2x + 5y – 3z)^2 $


$⇒ (-2x)^2 + (5y)^2 + (-3z)^2 $ + $ 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x) $


$⇒ 4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx $


Question 4 (vi)

Expand each of the following, using suitable identities :
(vi) (${1 \over 4} $a - ${1 \over 2} $b + 1)2


Solution :


Given , (${1 \over 4} $a - ${1 \over 2} $b + 1)2


To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca


Let, a = ${1 \over 4}$a , b = - ${1 \over 2} $b ,and c = 1

Substituting the value of a and b , c in given expression, we get;


$⇒ ({1 \over 4}a -{1 \over 2}b + 1)^2 $


$⇒ ({1 \over 4}a)^2 + (-{1 \over 2}b)^2 + (1)^2 $ $+ 2({1 \over 4}a)(-{1 \over 2}b) + 2(-{1 \over 2}b)(1) + 2(1)({1 \over 4}a) $


$⇒ {1 \over 16}a^2 +{1 \over 4}b^2 + 1 $ $ -{1 \over 4}ab -b + {1 \over 2}a $



Question 5 (i)

Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz


Solution :


Given , 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz


This can be re-written as:


$⇒ (2^2x^2) + (3^2y^2) + ( 4^2z^2) $ +$ 12xy – 24yz – 16xz $


$⇒ (2x)^2 + (3y)^2 + (4z)^2 $ + $ 12xy – 24yz – 16xz $


It can be observed that the coefficient value of yz and xz are negative, and the z is common in both term .

Hence ,


$⇒ (2x)^2 + (3y)^2 + (- 4z)^2 $ + $ 12xy – 24yz – 16xz $


$⇒ (2x)^2 + (3y)^2 + (- 4z)^2 $ $ + 2 × (2x) (3y) + 2 ×(3y)(- 4z)$ $+ 2 × (- 4z)(2x) $


Using suitable identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Let, a = 2x , b = 3y , c = -4z


Substituting the value of a and b , c in given expression, we get;


$⇒ (2x + 3y – 4z)^2 $


Thus, the factorization is

$⇒ (2x + 3y – 4z) (2x + 3y – 4z) $


Question 5 (ii)

Factorise:
(ii) 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz.


Solution :


Given , 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz.


This can be re-written as:


$⇒ (√2^2)x^2 + y^2 + (2√2)^2z^2 $ - $ 2√2 xy + 4√2 yz – 8xz $


$⇒ (√2x)^2 + (y)^2 + (2√2z)^2 $ - $ 2√2 xy + 4√2 yz – 8xz $


It can be observed that the coefficient value of xy and xz are negative, and the x is common in both term .

Hence ,


$⇒ (-√2x)^2 + (y)^2 + (2√2z)^2 $ - $ 2√2 xy + 4√2 yz – 8xz $


$⇒ (-√2x)^2 + (y)^2 + (2√2z)^2 $ $+ 2 × (-√2x) (y) + 2 ×(y)(2√2z)$ $+ 2 × (-√2x)(2√2z) $


Let, a = -√2x , b = y , c = 2√2z

Using suitable identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Substituting the value of a and b , c in given expression, we get;



$⇒ (-√2x + y +2√2z)^2 $


Thus, the factorization is

$ (-√2x + y +2√2z)$ $(-√2x + y +2√2z) $


Question 6 (i)

Write the following cubes in expanded form :
(i) (2x + 1)3


Solution :


Given , (2x + 1)3


To expand the given cubes, we will use the binomial expansion identities for the Cube of a sum:

(a + b)3 = a3 + b3 + 3ab (a + b)


Let, a = 2x and b = 1

Substituting the value of a and b in given expression, we get;


$⇒ (2x + 1)^3 $


$⇒ (2x)^3 + (1)^3 $ + $ 3×(2x)(1) ×(2x + 1) $


$⇒ 8x^3 + 1 + 6x ×(2x + 1) $


$⇒ 8x^3 + 1 + 12x^2 + 6x $


$⇒ 8x^3 + 12x^2 + 6x + 1 $


Question 6 (ii)

Write the following cubes in expanded form :
(ii) (2a – 3b)3


Solution :


Given , (2a – 3b)3


To expand the given cubes, we will use the binomial expansion identities for the Cube of a difference:

(x – y)3 = x3 - y3 - 3xy (x - y)


Let, x = 2a and y = 3b

Substituting the value of x and y in given expression, we get;


$⇒ (2a – 3b)^3 $


$⇒ (2a)^3 - (3b)^3 $ - $ 3×(2a)(3b) × (2a -3b) $


$⇒ 8a^3 - 27b^3 - 18ab × (2a -3b) $


$⇒ 8a^3 - 27b^3 - 36a^2b + 54ab^2 $


Question 6 (iii)

Write the following cubes in expanded form :
(iii) (${3 \over 2} $x + 1)3


Solution :


Given , (${3 \over 2} $x + 1)3


To expand the given cubes, we will use the binomial expansion identities for the Cube of a sum:

(a + b)3 = a3 + b3 + 3ab (a + b)


Let, a = ${3 \over 2} $x and b = 1

Substituting the value of a and b in given expression, we get;


$⇒ ({3 \over 2}x + 1)^3 $


$⇒ ({3 \over 2}x)^3 + (1)^3 $ + $ 3×({3 \over 2}x)(1) ×({3 \over 2}x + 1) $


$⇒ {27 \over 8}x^3 + 1 + {9 \over 2}x × ({3 \over 2}x + 1) $


$⇒ {27 \over 8}x^3 + 1 + {27 \over 4}x^2 + {9 \over 2}x $


$⇒ {27 \over 8}x^3 + {27 \over 4}x^2 + {9 \over 2}x + 1 $


Question 6 (iv)

Write the following cubes in expanded form :
(iv) (x - ${2 \over 3}y $)3


Solution :


Given , (x - ${2 \over 3}y $)3


To expand the given cubes, we will use the binomial expansion identities for the Cube of a difference:

(a - b)3 = a3 - b3 - 3ab (a - b)


Let, a = x and b = ${2 \over 3}y $


Substituting the value of a and b in given expression, we get;


$⇒ (x - {2 \over 3}y)^3 $


$⇒ (x)^3 - ({2 \over 3}y)^3 $ - $ 3×(x)({2 \over 3}y) ×(x - {2 \over 3}y) $


$⇒ x^3 - {8 \over 27}y^3 $ - $ 2xy × (x - {2 \over 3}y) $


$⇒ x^3 - {8 \over 27}y^3 $ - $ 2x^2y + {4 \over 3}xy^2 $


$⇒ x^3 - 2x^2y $ - $ {8 \over 27}y^3 + {4 \over 3}xy^2 $


Question 7 (i)

Evaluate the following using suitable identities:
(i) (99)3


Solution :


Given , (99)3


We can write 99 as 100−1.

= ( 100 - 1 )3


We'll use the identity for the cube of a difference : (a - b)3 = a3 - b3 - 3ab (a - b)


Let, a = 100 and b = 1

Substituting the value of a and b in given expression, we get;


$⇒ ( 100 - 1 )^3 $


$⇒ (100)^3 - (1)^3 $ - $ 3×(100)(1) ×(100 - 1) $


$⇒ 1000000 - 1 - 300 × 99 $


$⇒ 1000000 - 1 - 297100 $


$⇒ 970299 $


Question 7 (ii)

Evaluate the following using suitable identities:
(ii) (102)3


Solution :


Given , (102)3


We can write 102 as 100 + 2.

= ( 100 + 2 )3


We'll use the identity for the cube of a sum : (a + b)3 = a3 + b3 + 3ab (a + b)


Let, a = 100 and b = 2

Substituting the value of a and b in given expression, we get;


$⇒ ( 100 + 2 )^3 $


$⇒ (100)^3 + (2)^3 $ + $ 3×(100)(2) ×(100 + 2) $


$⇒ 1000000 + 8 + 600 × 102 $


$⇒ 1000008 + 61200 $

$⇒ 1061208 $


Question 7 (iii)

Evaluate the following using suitable identities:
(iii) (998)3


Solution :


Given , (998)3


We can write 99 as 1000−2.

= ( 1000 - 2 )3


We'll use the identity for the cube of a difference : (a - b)3 = a3 - b3 - 3ab (a - b)


Let, a = 1000 and b = 2

Substituting the value of a and b in given expression, we get;


$⇒ ( 1000 - 2 )^3 $


$⇒ (1000)^3 - (2)^3 $ - $ 3×(1000)(2) ×(1000 - 2) $


$⇒ 1000000000 - 8 - 6000 × 998 $


$⇒ 1000000000 - 8 - 5988000 $


$⇒ 1000000000 - 5988008 $


$⇒ 994011992 $


Question 8 (i)

Factorize each of the following :
(i) 8a3 + b3 + 12a2b + 6ab2


Solution :


Given , 8a3 + b3 + 12a2b + 6ab2

This can be re-written as:


$⇒ (2^3)a^3 + b^3 $ + $ 12a^2b + 6ab^2 $


$⇒ (2a)^3 + (b)^3 $ + $ 12a^2b + 6ab^2 $


$⇒ (2a)^3 + (b)^3 $ + $ 6ab( 2a+ b) $


$⇒ (2a)^3 + (b)^3 $ + $ 3 × 2a × b ( 2a+ b) $


Let, x = 2a , y = b

Using suitable identity : (x + y)3 = x3 + y3 + 3xy (x + y)

Substituting the value of x and y in given expression, we get;


$⇒ (2a +b)^3 $


Thus, the factorization is

$⇒ (2a + b)(2a + b)(2a + b) $


Question 8 (ii)

Factorize each of the following :
(ii) 8a3 - b3 - 12a2b + 6ab2


Solution :


Given , 8a3 - b3 - 12a2b + 6ab2

This can be re-written as:


$⇒ (2^3)a^3 - b^3 $ - $ 12a^2b + 6ab^2 $


$⇒ (2a)^3 - (b)^3 $ - $ 12a^2b + 6ab^2 $


$⇒ (2a)^3 - (b)^3 $ - $ 6ab( 2a - b) $


$⇒ (2a)^3 - (b)^3 $ - $ 3 × 2a × b( 2a - b) $


Let, x = 2a , y = b

Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)

Substituting the value of x and y in given expression, we get;


$⇒ (2a - b)^3 $


Thus, the factorization is

$⇒ (2a - b)(2a - b)(2a - b) $


Question 8 (iii)

Factorize each of the following :
(iii) 27 – 125a3 – 135a + 225a2


Solution :


Given , 27 – 125a3 – 135a + 225a2

This can be re-written as:


$⇒ (3)^3 - (5^3)a^3 $ - $ 135a + 225a^2 $


$⇒ (3)^3 - (5a)^3 $ - $ 135a + 225a^2 $


$⇒ (3)^3 - (5a)^3 $ - $ 45a( 3 - 5a) $


$⇒ (3)^3 - (5a)^3 $ - $ 3 × 3 × 5a ( 3 - 5a) $


Let, x = 3 , y = 5a

Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)

Substituting the value of x and y in given expression, we get;


$⇒ (3 - 5a)^3 $


Thus, the factorization is

$⇒ (3 - 5a)(3 - 5a)(3 - 5a) $


Question 8 (iv)

Factorize each of the following :
(iv) 64a3 – 27b3 - 144a2b + 108ab2


Solution :


Given , 64a3 – 27b3 - 144a2b + 108ab2

This can be re-written as:


$⇒ (4^3)a^3 - (3^3)b^3 $ - $ 144a^2b + 108ab^2 $


$⇒ (4a)^3 - (3b)^3 $ - $ 144a^2b + 108ab^2 $


$⇒ (4a)^3 - (3b)^3 $ - $ 36ab( 4a - 3b) $


$⇒ (4a)^3 - (3b)^3 $ - $ 3 × 4a × 3b( 4a - 3b) $


Let, x = 4a , y = 3b

Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)

Substituting the value of x and y in given expression, we get;


$⇒ (4a - 3b)^3 $


Thus, the factorization is

$⇒ (4a - 3b)(4a - 3b)(4a - 3b) $


Question 8 (v)

Factorize each of the following :
(v) 27p3 – ${1 \over 216} $ - ${9 \over 2} $p2 + ${1 \over 4} $p


Solution :


Given , 27p3 – ${1 \over 216} $ - ${9 \over 2} $p2 + ${1 \over 4} $p

This can be re-written as:


$⇒ (3^3)p^3 - ({1^3 \over {6^3}}) $ - $ {9 \over 2}p^2 + {1 \over 4}p $


$⇒ (3p)^3 - ({1 \over 6})^3 $ - ${9 \over 2}p^2 + {1 \over 4}p $


$⇒ (3p)^3 - ({1 \over 6})^3 $ - $ 3 × 3p × {1 \over 6}( 3p - {1 \over 6}) $


Let, x = 3p , y = ${1 \over 6} $


Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)

Substituting the value of x and y in given expression, we get;


$⇒ (3p - {1 \over 6})^3 $


Thus, the factorization is

$⇒ (3p - {1 \over 6})(3p - {1 \over 6})(3p - {1 \over 6}) $


Question 9 (i)

Verify:
(i) x3 + y3 = (x + y) (x2 – xy + y2)


Solution :


Given , x3 + y3 = (x + y) (x2 – xy + y2)


Consider R.H.S.


(x + y) (x2 – xy + y2)


$⇒ x × (x^2 - xy + y^2) + y × (x^2 - xy + y^2) $

Expand by multiplying x with the second trinomial, and then y with the second trinomial:


$⇒ x^3 - x^2y + xy^2 + x^2y - xy^2 + y^3 $

Distribute x and y into the parentheses


$⇒ x^3 - x^2y + x^2y + xy^2 - xy^2 + y^3 $

Group and cancel the like terms


$⇒ x^3 + y^3 $

= L. H.S.


Since R. H.S. = x3 + y3 = L. H.S., the identity is verified.


Question 9 (ii)

Verify:
(ii) x3 - y3 = (x - y) (x2 + xy + y2)


Solution :


Given , x3 - y3 = (x - y) (x2 + xy + y2)


Consider R.H.S.


(x - y) (x2 + xy + y2)


$⇒ x × (x^2 + xy + y^2) - y × (x^2 + xy + y^2) $

Expand by multiplying x with the second trinomial, and then -y with the second trinomial:


$⇒ x^3 + x^2y + xy^2 - x^2y - xy^2 - y^3 $

Distribute x and y into the parentheses


$⇒ x^3 + x^2y - x^2y + xy^2 - xy^2 - y^3 $

Group and cancel the like terms


$⇒ x^3 - y^3 $

= L. H.S.


Since R. H.S. = x3 - y3 = L. H.S., the identity is verified.


Question 10 (i)

Factorise each of the following:
(i) 27 y3 + 125z3


Solution :


Given , 27 y3 + 125z3

This can be re-written as:


$⇒ (3^3)y^3 + (5^3)z^3 $

$⇒ (3y)^3 + (5z)^3 $


Let, a = 3y , b = 5z


Using suitable identity : a3 + b3 = (a + b) (a2 – ab + b2)

Substituting the value of a and b in given expression, we get;


$⇒ 27y^3 + 125z^3 $


$⇒ (3y + 5z) [(3y)^2 – (3y × 5z) + (5z)^2] $


$⇒ (3y + 5z) ( 9y^2 – 15yz + 25z^2) $


Thus, the factorization is


(3y + 5z) ( 9y2 – 15yz + 25z2)


Question 10 (ii)

Factorise each of the following:
(ii) 64m3 - 343n3


Solution :


Given , 64m3 - 343n3

This can be re-written as:


$⇒ (4^3)m^3 - (7^3)n^3 $

$⇒ (4m)^3 - (7n)^3 $


Let, a = 4m , b = 7n


Using suitable identity : a3 - b3 = (a - b) (a2 + ab + b2)

Substituting the value of a and b in given expression, we get;


$⇒ 64m^3 - 343n^3 $


$⇒ (4m - 7n) [(4m )^2 + (4m ×7n) + (7n)^2] $


$⇒ (4m - 7n) ( 16m^2 + 28mn + 49n^2) $


Thus, the factorization is


(4m - 7n) ( 16m2 + 28mn + 49n2)


Question 11

Factorise :
27 x3 + y3 + z3 -9xyz


Solution :


Given , 27 x3 + y3 + z3 -9xyz

This can be re-written as:


$⇒ (3^3)x^3 + y^3+ z^3 - 9xyz $

$⇒ (3x)^3 + y^3+ z^3 - 3 × 3x × y × z $


Let, x = 3x , y = y and z = z


Using suitable identity :
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)


$⇒ 27x^3 + y^3+ z^3 - 9xyz $


Substituting the value of x and y and z in given expression, we get;


$⇒ (3x + y + z) $ $[(3x)^2 + y^2 + z^2 – (3x × y) – (y×z) – (z×3x)] $


$⇒ (3x + y + z) $ $[9x^2 + y^2 + z^2 – 3xy – yz – 3zx] $


Thus, the factorization is


(3x + y + z) [9x2 + y2 + z2 – 3xy – yz – 3zx]


Question 12

Verify that:
$ x^3 + y^3 + z^3 – 3xyz =$ ${1 \over 2}(x + y + z)$ $[(x – y)^2 + (y – z)^2 + (z – x)^2] $


Solution :


Given , $ x^3 + y^3 + z^3 – 3xyz =$ ${1 \over 2}(x + y + z)$ $[(x – y)^2 + (y – z)^2 + (z – x)^2] $


Consider R.H.S.


$ {1 \over 2}(x + y + z) [(x – y)^2 + (y – z)^2 + (z – x)^2] $


Using suitable identity : (x-y)2 = x2 - 2xy + y2


$⇒ {1 \over 2}(x + y + z) $ $[(x^2 + y^2 - 2xy) $ + $(y^2 + z^2 - 2yz) + (z^2+ x^2 - 2zx)] $


$⇒ {1 \over 2}(x + y + z) $ $ (2x^2 + 2y^2 + 2z^2- 2xy - 2yz - 2zx) $


$⇒ {1 \over 2}(x + y + z) $ $ 2 ×(x^2 + y^2 + z^2- xy - yz - zx) $


$⇒ (x + y + z) $ $ (x^2 + y^2 + z^2- xy - yz - zx) $


We know that

x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)


Therefore ,

$ x^3 + y^3 + z^3 – 3xyz $

= L.H.S.


Hence Proved


Question 13

If x + y + z = 0, show that
x3 + y3 + z3 = 3xyz


Solution :


We know that,: x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)


Substituting the value of x + y + z = 0, we get;


$⇒ x^3 + y^3+ z^3 - 3xyz $ $ = (0)(x^2 + y^2+ z^2 – xy – yz - zx) $


$⇒ x^3 + y^3+ z^3 - 3xyz = 0 $


$⇒ x^3 + y^3+ z^3 = 3xyz $


Hence Proved.


Question 14 (i)

Without actually calculating the cubes, find the value of each of the following :
(i) (-12)3 + (7)3 + (5)3


Solution :


Given , (-12)3 + (7)3 + (5)3


Let, x = -12 , y = 7 and z = 5


Now , (x + y + z) = (-12) + (7) + (5) = 0


We know that,: if x + y + z = 0 then,

x3 + y3 + z3 = 3xyz


Substituting the value of x and y and z in given expression, we get;


$⇒ (-12)^3 + 7^3+ 5^3 $ $= 3 × (-12) × 7 × 5 $


$⇒ 3 × (-420) $


$⇒ - 1260 $


Therefore, The value of

(-12)3 + (7)3 + (5)3 = -1260


Question 14 (ii)

Without actually calculating the cubes, find the value of each of the following :
(ii) 283 + (-15)3 + (-13)3


Solution :


Given , 283 + (-15)3 + (-13)3


Let, x = 28 , y = -15 and z = -13

Now , (x + y + z) = (28) + (-15) + (-13) = 0


We know that,: if x + y + z = 0 then,

x3 + y3 + z3 = 3xyz


Substituting the value of x and y and z in given expression, we get;


$⇒ 28^3 + (-15)^3+ (-13)^3 $ $ = 3 × 28 × (-15) × (-13) $


$= 84 × 195 $


$⇒ 16380 $


Therefore, The value of

283 + (-15)3 + (-13)3 = 16380


Question 15 (i)

Given possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area: 25a2 - 35a + 12


Solution :


Given , Area: 25a2 - 35a + 12


We know that,: Area of rectangle = Length × Breadth ,

Hence, First we shall factorise the given expression


Given , 25a2 - 35a + 12


For quadratic polynomial, We factorize By Splitting the middle term method:


Find 2 numbers p,q such that :

(i) p × q = product of the co-efficient of a2 and the constant term (last term)

(ii) p + q = co-efficient of middle term or a


p × q = 25 × 12 = 300

p + q = -35


By trial and error method,

We get p = -20 and q = -15


Now, splitting the middle term of given polynomial can be written as follows:

$$ = 25a^2 - 20a -15a + 12 $$

( By taking 5a and -3 as common, we get)


$$ = 5a (5a - 4) - 3 (5a - 4) $$

( By taking (5a - 4) as common, we get)


$$ = (5a - 4) (5a - 3) $$


Factors of given polynomial : (5a - 4)(5a - 3)

Therefore,


Length = (5a - 4) and Breadth = (5a - 3)

Or Length = (5a - 3) and Breadth = (5a - 4)


Question 15 (ii)

Given possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(ii) Area: 35y2 + 13y - 12


Solution :


Given , Area: 35y2 + 13y - 12


We know that,: Area of rectangle = Length × Breadth ,

Hence, First we shall factorise the given expression


Given , 35y2 + 13y - 12


For quadratic polynomial, We factorize By Splitting the middle term method:


Find 2 numbers p,q such that :

(i) p × q = product of the co-efficient of a2 and the constant term (last term)

(ii) p + q = co-efficient of middle term or a


p × q = 35 × -12 = -420

p + q = 13


By trial and error method,

We get p = 28 and q = -15


Now, splitting the middle term of given polynomial can be written as follows:

$$ = 35y^2 + 28y - 15y - 12 $$

( By taking 7y and -3 as common, we get)


$$ = 7y (5y + 4) - 3 (5y + 4) $$

( By taking (5y + 4) as common, we get)


$$ = (5y + 4) (7y - 3) $$


Factors of given polynomial : (5y + 4) (7y - 3)

Therefore,


Length = (5y + 4) and Breadth = (7y - 3)

Or Length = (7y - 3) and Breadth = (5y + 4)


Question 16 (i)

What are the possible expressions for the dimensions of the cuboids whose volume are given below:
(i) Volume: 3x2 -12x


Solution :


Given , Volume: 3x2 -12x


We know that,: Volume of a cubiod = length × breadth × height

Hence, First we shall factorise the given expression


$⇒ 3x^2 -12x $


$= 3x × (x - 4x) $


$= 3 × x × (x - 4x) $


Therefore,

Possible length, breadth and height are 3x , x , (x-4)


Question 16 (ii)

What are the possible expressions for the dimensions of the cuboids whose volume are given below:
(ii) Volume: 12ky2 + 8 ky – 20k


Solution :


Given , Volume: 12ky2 + 8 ky – 20k


We know that,: Volume of a cubiod = length × breadth × height

Hence, First we shall factorise the given expression


$⇒ 12ky^2 + 8 ky – 20k $


$= 4k × (3y^2 + 2y - 5) $


$= 4k × (3y^2 – 3y + 5y – 5) $


$= 4k × [3y (y – 1) + 5(y – 1)] $


$= 4k × (y – 1)× (3y + 5) $


Therefore,

Possible length, breadth and height are 4k , (y – 1),(3y + 5)


Syllabus for class 10

Advanced courses and exam preparation.

Previous Year Paper

Advanced courses and exam preparation.

Mock Test

Explore programming, data science, and AI.